Enter a problem...
Linear Algebra Examples
x+612=16+x-57
Step 1
Multiply both sides by 12.
x+612⋅12=(16+x-57)⋅12
Step 2
Step 2.1
Simplify the left side.
Step 2.1.1
Cancel the common factor of 12.
Step 2.1.1.1
Cancel the common factor.
x+612⋅12=(16+x-57)⋅12
Step 2.1.1.2
Rewrite the expression.
x+6=(16+x-57)⋅12
x+6=(16+x-57)⋅12
x+6=(16+x-57)⋅12
Step 2.2
Simplify the right side.
Step 2.2.1
Simplify (16+x-57)⋅12.
Step 2.2.1.1
To write 16 as a fraction with a common denominator, multiply by 77.
x+6=(16⋅77+x-57)⋅12
Step 2.2.1.2
To write x-57 as a fraction with a common denominator, multiply by 66.
x+6=(16⋅77+x-57⋅66)⋅12
Step 2.2.1.3
Write each expression with a common denominator of 42, by multiplying each by an appropriate factor of 1.
Step 2.2.1.3.1
Multiply 16 by 77.
x+6=(76⋅7+x-57⋅66)⋅12
Step 2.2.1.3.2
Multiply 6 by 7.
x+6=(742+x-57⋅66)⋅12
Step 2.2.1.3.3
Multiply x-57 by 66.
x+6=(742+(x-5)⋅67⋅6)⋅12
Step 2.2.1.3.4
Multiply 7 by 6.
x+6=(742+(x-5)⋅642)⋅12
x+6=(742+(x-5)⋅642)⋅12
Step 2.2.1.4
Combine the numerators over the common denominator.
x+6=7+(x-5)⋅642⋅12
Step 2.2.1.5
Simplify the numerator.
Step 2.2.1.5.1
Apply the distributive property.
x+6=7+x⋅6-5⋅642⋅12
Step 2.2.1.5.2
Move 6 to the left of x.
x+6=7+6⋅x-5⋅642⋅12
Step 2.2.1.5.3
Multiply -5 by 6.
x+6=7+6⋅x-3042⋅12
Step 2.2.1.5.4
Subtract 30 from 7.
x+6=6x-2342⋅12
x+6=6x-2342⋅12
Step 2.2.1.6
Simplify terms.
Step 2.2.1.6.1
Cancel the common factor of 6.
Step 2.2.1.6.1.1
Factor 6 out of 42.
x+6=6x-236(7)⋅12
Step 2.2.1.6.1.2
Factor 6 out of 12.
x+6=6x-236⋅7⋅(6⋅2)
Step 2.2.1.6.1.3
Cancel the common factor.
x+6=6x-236⋅7⋅(6⋅2)
Step 2.2.1.6.1.4
Rewrite the expression.
x+6=6x-237⋅2
x+6=6x-237⋅2
Step 2.2.1.6.2
Combine 6x-237 and 2.
x+6=(6x-23)⋅27
Step 2.2.1.6.3
Move 2 to the left of 6x-23.
x+6=2(6x-23)7
x+6=2(6x-23)7
x+6=2(6x-23)7
x+6=2(6x-23)7
x+6=2(6x-23)7
Step 3
Step 3.1
Multiply both sides by 7.
(x+6)⋅7=2(6x-23)7⋅7
Step 3.2
Simplify.
Step 3.2.1
Simplify the left side.
Step 3.2.1.1
Simplify (x+6)⋅7.
Step 3.2.1.1.1
Apply the distributive property.
x⋅7+6⋅7=2(6x-23)7⋅7
Step 3.2.1.1.2
Simplify the expression.
Step 3.2.1.1.2.1
Move 7 to the left of x.
7⋅x+6⋅7=2(6x-23)7⋅7
Step 3.2.1.1.2.2
Multiply 6 by 7.
7x+42=2(6x-23)7⋅7
7x+42=2(6x-23)7⋅7
7x+42=2(6x-23)7⋅7
7x+42=2(6x-23)7⋅7
Step 3.2.2
Simplify the right side.
Step 3.2.2.1
Simplify 2(6x-23)7⋅7.
Step 3.2.2.1.1
Cancel the common factor of 7.
Step 3.2.2.1.1.1
Cancel the common factor.
7x+42=2(6x-23)7⋅7
Step 3.2.2.1.1.2
Rewrite the expression.
7x+42=2(6x-23)
7x+42=2(6x-23)
Step 3.2.2.1.2
Apply the distributive property.
7x+42=2(6x)+2⋅-23
Step 3.2.2.1.3
Multiply.
Step 3.2.2.1.3.1
Multiply 6 by 2.
7x+42=12x+2⋅-23
Step 3.2.2.1.3.2
Multiply 2 by -23.
7x+42=12x-46
7x+42=12x-46
7x+42=12x-46
7x+42=12x-46
7x+42=12x-46
Step 3.3
Solve for x.
Step 3.3.1
Move all terms containing x to the left side of the equation.
Step 3.3.1.1
Subtract 12x from both sides of the equation.
7x+42-12x=-46
Step 3.3.1.2
Subtract 12x from 7x.
-5x+42=-46
-5x+42=-46
Step 3.3.2
Move all terms not containing x to the right side of the equation.
Step 3.3.2.1
Subtract 42 from both sides of the equation.
-5x=-46-42
Step 3.3.2.2
Subtract 42 from -46.
-5x=-88
-5x=-88
Step 3.3.3
Divide each term in -5x=-88 by -5 and simplify.
Step 3.3.3.1
Divide each term in -5x=-88 by -5.
-5x-5=-88-5
Step 3.3.3.2
Simplify the left side.
Step 3.3.3.2.1
Cancel the common factor of -5.
Step 3.3.3.2.1.1
Cancel the common factor.
-5x-5=-88-5
Step 3.3.3.2.1.2
Divide x by 1.
x=-88-5
x=-88-5
x=-88-5
Step 3.3.3.3
Simplify the right side.
Step 3.3.3.3.1
Dividing two negative values results in a positive value.
x=885
x=885
x=885
x=885
x=885
Step 4
The domain is the set of all valid x values.
{x|x=885}
Step 5