Linear Algebra Examples

Find the Domain (x+6)/12=1/6+(x-5)/7
x+612=16+x-57
Step 1
Multiply both sides by 12.
x+61212=(16+x-57)12
Step 2
Simplify.
Tap for more steps...
Step 2.1
Simplify the left side.
Tap for more steps...
Step 2.1.1
Cancel the common factor of 12.
Tap for more steps...
Step 2.1.1.1
Cancel the common factor.
x+61212=(16+x-57)12
Step 2.1.1.2
Rewrite the expression.
x+6=(16+x-57)12
x+6=(16+x-57)12
x+6=(16+x-57)12
Step 2.2
Simplify the right side.
Tap for more steps...
Step 2.2.1
Simplify (16+x-57)12.
Tap for more steps...
Step 2.2.1.1
To write 16 as a fraction with a common denominator, multiply by 77.
x+6=(1677+x-57)12
Step 2.2.1.2
To write x-57 as a fraction with a common denominator, multiply by 66.
x+6=(1677+x-5766)12
Step 2.2.1.3
Write each expression with a common denominator of 42, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 2.2.1.3.1
Multiply 16 by 77.
x+6=(767+x-5766)12
Step 2.2.1.3.2
Multiply 6 by 7.
x+6=(742+x-5766)12
Step 2.2.1.3.3
Multiply x-57 by 66.
x+6=(742+(x-5)676)12
Step 2.2.1.3.4
Multiply 7 by 6.
x+6=(742+(x-5)642)12
x+6=(742+(x-5)642)12
Step 2.2.1.4
Combine the numerators over the common denominator.
x+6=7+(x-5)64212
Step 2.2.1.5
Simplify the numerator.
Tap for more steps...
Step 2.2.1.5.1
Apply the distributive property.
x+6=7+x6-564212
Step 2.2.1.5.2
Move 6 to the left of x.
x+6=7+6x-564212
Step 2.2.1.5.3
Multiply -5 by 6.
x+6=7+6x-304212
Step 2.2.1.5.4
Subtract 30 from 7.
x+6=6x-234212
x+6=6x-234212
Step 2.2.1.6
Simplify terms.
Tap for more steps...
Step 2.2.1.6.1
Cancel the common factor of 6.
Tap for more steps...
Step 2.2.1.6.1.1
Factor 6 out of 42.
x+6=6x-236(7)12
Step 2.2.1.6.1.2
Factor 6 out of 12.
x+6=6x-2367(62)
Step 2.2.1.6.1.3
Cancel the common factor.
x+6=6x-2367(62)
Step 2.2.1.6.1.4
Rewrite the expression.
x+6=6x-2372
x+6=6x-2372
Step 2.2.1.6.2
Combine 6x-237 and 2.
x+6=(6x-23)27
Step 2.2.1.6.3
Move 2 to the left of 6x-23.
x+6=2(6x-23)7
x+6=2(6x-23)7
x+6=2(6x-23)7
x+6=2(6x-23)7
x+6=2(6x-23)7
Step 3
Solve for x.
Tap for more steps...
Step 3.1
Multiply both sides by 7.
(x+6)7=2(6x-23)77
Step 3.2
Simplify.
Tap for more steps...
Step 3.2.1
Simplify the left side.
Tap for more steps...
Step 3.2.1.1
Simplify (x+6)7.
Tap for more steps...
Step 3.2.1.1.1
Apply the distributive property.
x7+67=2(6x-23)77
Step 3.2.1.1.2
Simplify the expression.
Tap for more steps...
Step 3.2.1.1.2.1
Move 7 to the left of x.
7x+67=2(6x-23)77
Step 3.2.1.1.2.2
Multiply 6 by 7.
7x+42=2(6x-23)77
7x+42=2(6x-23)77
7x+42=2(6x-23)77
7x+42=2(6x-23)77
Step 3.2.2
Simplify the right side.
Tap for more steps...
Step 3.2.2.1
Simplify 2(6x-23)77.
Tap for more steps...
Step 3.2.2.1.1
Cancel the common factor of 7.
Tap for more steps...
Step 3.2.2.1.1.1
Cancel the common factor.
7x+42=2(6x-23)77
Step 3.2.2.1.1.2
Rewrite the expression.
7x+42=2(6x-23)
7x+42=2(6x-23)
Step 3.2.2.1.2
Apply the distributive property.
7x+42=2(6x)+2-23
Step 3.2.2.1.3
Multiply.
Tap for more steps...
Step 3.2.2.1.3.1
Multiply 6 by 2.
7x+42=12x+2-23
Step 3.2.2.1.3.2
Multiply 2 by -23.
7x+42=12x-46
7x+42=12x-46
7x+42=12x-46
7x+42=12x-46
7x+42=12x-46
Step 3.3
Solve for x.
Tap for more steps...
Step 3.3.1
Move all terms containing x to the left side of the equation.
Tap for more steps...
Step 3.3.1.1
Subtract 12x from both sides of the equation.
7x+42-12x=-46
Step 3.3.1.2
Subtract 12x from 7x.
-5x+42=-46
-5x+42=-46
Step 3.3.2
Move all terms not containing x to the right side of the equation.
Tap for more steps...
Step 3.3.2.1
Subtract 42 from both sides of the equation.
-5x=-46-42
Step 3.3.2.2
Subtract 42 from -46.
-5x=-88
-5x=-88
Step 3.3.3
Divide each term in -5x=-88 by -5 and simplify.
Tap for more steps...
Step 3.3.3.1
Divide each term in -5x=-88 by -5.
-5x-5=-88-5
Step 3.3.3.2
Simplify the left side.
Tap for more steps...
Step 3.3.3.2.1
Cancel the common factor of -5.
Tap for more steps...
Step 3.3.3.2.1.1
Cancel the common factor.
-5x-5=-88-5
Step 3.3.3.2.1.2
Divide x by 1.
x=-88-5
x=-88-5
x=-88-5
Step 3.3.3.3
Simplify the right side.
Tap for more steps...
Step 3.3.3.3.1
Dividing two negative values results in a positive value.
x=885
x=885
x=885
x=885
x=885
Step 4
The domain is the set of all valid x values.
{x|x=885}
Step 5
 [x2  12  π  xdx ]